Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Syst Rev ; 12(1): 57, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2309128

ABSTRACT

BACKGROUND: Major depressive disorder causes a great burden on patients and societies. Venlafaxine and mirtazapine are commonly prescribed as second-line treatment for patients with major depressive disorder worldwide. Previous systematic reviews have concluded that venlafaxine and mirtazapine reduce depressive symptoms, but the effects seem small and may not be important to the average patient. Moreover, previous reviews have not systematically assessed the occurrence of adverse events. Therefore, we aim to investigate the risks of adverse events with venlafaxine or mirtazapine versus 'active placebo', placebo, or no intervention for adults with major depressive disorder in two separate systematic reviews. METHODS: This is a protocol for two systematic reviews with meta-analysis and Trial Sequential Analysis. The assessments of the effects of venlafaxine or mirtazapine will be reported in two separate reviews. The protocol is reported as recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols, risk of bias will be assessed with the Cochrane risk-of-bias tool version 2, clinical significance will be assessed using our eight-step procedure, and the certainty of the evidence will be assessed with the Grading of Recommendations Assessment, Development and Evaluation approach. We will search for published and unpublished trials in major medical databases and trial registers. Two review authors will independently screen the results from the literature searches, extract data, and assess risk of bias. We will include published or unpublished randomised clinical trial comparing venlafaxine or mirtazapine with 'active placebo', placebo, or no intervention for adults with major depressive disorder. The primary outcomes will be suicides or suicide attempts, serious adverse events, and non-serious adverse events. Exploratory outcomes will include depressive symptoms, quality of life, and individual adverse events. If feasible, we will assess the intervention effects using random-effects and fixed-effect meta-analyses. DISCUSSION: Venlafaxine and mirtazapine are frequently used as second-line treatment of major depressive disorder worldwide. There is a need for a thorough systematic review to provide the necessary background for weighing the benefits against the harms. This review will ultimately inform best practice in the treatment of major depressive disorder. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022315395.


Subject(s)
Depressive Disorder, Major , Humans , Adult , Mirtazapine/adverse effects , Depressive Disorder, Major/drug therapy , Venlafaxine Hydrochloride/adverse effects , Quality of Life , Meta-Analysis as Topic , Review Literature as Topic
2.
BMJ ; 378: e070022, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1932663

ABSTRACT

OBJECTIVE: To assess the benefits and harms of different types and doses of anticoagulant drugs for the prevention of venous thromboembolism in patients who are acutely ill and admitted to hospital. DESIGN: Systematic review and network meta-analysis. DATA SOURCES: Cochrane CENTRAL, PubMed/Medline, Embase, Web of Science, clinical trial registries, and national health authority databases. The search was last updated on 16 November 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Published and unpublished randomised controlled trials that evaluated low or intermediate dose low-molecular-weight heparin, low or intermediate dose unfractionated heparin, direct oral anticoagulants, pentasaccharides, placebo, or no intervention for the prevention of venous thromboembolism in acutely ill adult patients in hospital. MAIN OUTCOME MEASURES: Random effects, bayesian network meta-analyses used four co-primary outcomes: all cause mortality, symptomatic venous thromboembolism, major bleeding, and serious adverse events at or closest timing to 90 days. Risk of bias was also assessed using the Cochrane risk-of-bias 2.0 tool. The quality of evidence was graded using the Confidence in Network Meta-Analysis framework. RESULTS: 44 randomised controlled trials that randomly assigned 90 095 participants were included in the main analysis. Evidence of low to moderate quality suggested none of the interventions reduced all cause mortality compared with placebo. Pentasaccharides (odds ratio 0.32, 95% credible interval 0.08 to 1.07), intermediate dose low-molecular-weight heparin (0.66, 0.46 to 0.93), direct oral anticoagulants (0.68, 0.33 to 1.34), and intermediate dose unfractionated heparin (0.71, 0.43 to 1.19) were most likely to reduce symptomatic venous thromboembolism (very low to low quality evidence). Intermediate dose unfractionated heparin (2.63, 1.00 to 6.21) and direct oral anticoagulants (2.31, 0.82 to 6.47) were most likely to increase major bleeding (low to moderate quality evidence). No conclusive differences were noted between interventions regarding serious adverse events (very low to low quality evidence). When compared with no intervention instead of placebo, all active interventions did more favourably with regard to risk of venous thromboembolism and mortality, and less favourably with regard to risk of major bleeding. The results were robust in prespecified sensitivity and subgroup analyses. CONCLUSIONS: Low-molecular-weight heparin in an intermediate dose appears to confer the best balance of benefits and harms for prevention of venous thromboembolism. Unfractionated heparin, in particular the intermediate dose, and direct oral anticoagulants had the least favourable profile. A systematic discrepancy was noted in intervention effects that depended on whether placebo or no intervention was the reference treatment. Main limitations of this study include the quality of the evidence, which was generally low to moderate due to imprecision and within-study bias, and statistical inconsistency, which was addressed post hoc. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020173088.


Subject(s)
Thrombosis , Venous Thromboembolism , Anticoagulants/adverse effects , Bayes Theorem , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Heparin/adverse effects , Heparin, Low-Molecular-Weight/adverse effects , Hospitals , Humans , Network Meta-Analysis , Randomized Controlled Trials as Topic , Thrombosis/drug therapy , Venous Thromboembolism/drug therapy
3.
BMJ Open ; 12(6): e058795, 2022 06 23.
Article in English | MEDLINE | ID: covidwho-1909758

ABSTRACT

OBJECTIVES: To assess the benefits and harms of aluminium adjuvants versus placebo or no intervention in randomised clinical trials in relation to human vaccine development. DESIGN: Systematic review with meta-analysis and trial sequential analysis assessing the certainty of evidence with Grading of Recommendations Assessment, Development and Evaluation (GRADE). DATA SOURCES: We searched CENTRAL, MEDLINE, Embase, LILACS, BIOSIS, Science Citation Index Expanded and Conference Proceedings Citation Index-Science until 29 June 2021, and Chinese databases until September 2021. ELIGIBILITY CRITERIA: Randomised clinical trials irrespective of type, status and language of publication, with trial participants of any sex, age, ethnicity, diagnosis, comorbidity and country of residence. DATA EXTRACTION AND SYNTHESIS: Two independent reviewers extracted data and assessed risk of bias with Cochrane's RoB tool 1. Dichotomous data were analysed as risk ratios (RRs) and continuous data as mean differences. We explored both fixed-effect and random-effects models, with 95% CI. Heterogeneity was quantified with I2 statistic. We GRADE assessed the certainty of the evidence. RESULTS: We included 102 randomised clinical trials (26 457 participants). Aluminium adjuvants versus placebo or no intervention may have no effect on serious adverse events (RR 1.18, 95% CI 0.97 to 1.43; very low certainty) and on all-cause mortality (RR 1.02, 95% CI 0.74 to 1.41; very low certainty). No trial reported on quality of life. Aluminium adjuvants versus placebo or no intervention may increase adverse events (RR 1.13, 95% CI 1.07 to 1.20; very low certainty). We found no or little evidence of a difference between aluminium adjuvants versus placebo or no intervention when assessing serology with geometric mean titres or concentrations or participants' seroprotection. CONCLUSIONS: Based on evidence at very low certainty, we were unable to identify benefits of aluminium adjuvants, which may be associated with adverse events considered non-serious.


Subject(s)
Adjuvants, Immunologic , Aluminum , Vaccines , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Aluminum/administration & dosage , Aluminum/adverse effects , Humans , Placebos , Quality of Life , Randomized Controlled Trials as Topic , Vaccines/adverse effects
4.
Cochrane Database Syst Rev ; 8: CD011564, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1813438

ABSTRACT

BACKGROUND: Vitamin D deficiency is often reported in people with chronic liver diseases. Improving vitamin D status could therefore be beneficial for people with chronic liver diseases. OBJECTIVES: To assess the beneficial and harmful effects of vitamin D supplementation in adults with chronic liver diseases. SEARCH METHODS: We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE Ovid, Embase Ovid, LILACS, Science Citation Index Expanded, and Conference Proceedings Citation Index-Science. We also searched ClinicalTrials.gov  and the World Health Organization International Clinical Trials Registry Platform. We scanned bibliographies of relevant publications and enquired experts and pharmaceutical companies as to additional trials. All searches were up to November 2020. SELECTION CRITERIA: Randomised clinical trials that compared vitamin D at any dose, duration, and route of administration versus placebo or no intervention in adults with chronic liver diseases. Vitamin D could have been administered as supplemental vitamin D (vitamin D3 (cholecalciferol) or vitamin D2 (ergocalciferol)), or an active form of vitamin D (1α-hydroxyvitamin D (alfacalcidol), 25-hydroxyvitamin D (calcidiol), or 1,25-dihydroxyvitamin D (calcitriol)). DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We used GRADE to assess the certainty of evidence. MAIN RESULTS: We included 27 randomised clinical trials with 1979 adult participants. This review update added 12 trials with 945 participants. We assessed all trials as at high risk of bias. All trials had a parallel-group design. Eleven trials were conducted in high-income countries and 16 trials in middle-income countries. Ten trials included participants with chronic hepatitis C, five trials participants with liver cirrhosis, 11 trials participants with non-alcoholic fatty liver disease, and one trial liver transplant recipients. All of the included trials reported the baseline vitamin D status of participants. Participants in nine trials had baseline serum 25-hydroxyvitamin D levels at or above vitamin D adequacy (20 ng/mL), whilst participants in the remaining 18 trials were vitamin D insufficient (less than 20 ng/mL). Twenty-four trials administered vitamin D orally, two trials intramuscularly, and one trial intramuscularly and orally. In all 27 trials, the mean duration of vitamin D supplementation was 6 months, and the mean follow-up of participants from randomisation was 7 months. Twenty trials (1592 participants; 44% women; mean age 48 years) tested vitamin D3 (cholecalciferol); three trials (156 participants; 28% women; mean age 54 years) tested vitamin D2; four trials (291 participants; 60% women; mean age 52 years) tested 1,25-dihydroxyvitamin D; and one trial (18 participants; 0% women; mean age 52 years) tested 25-hydroxyvitamin D. One trial did not report the form of vitamin D. Twelve trials used a placebo, whilst the other 15 trials used no intervention in the control group. Fourteen trials appeared to be free of vested interest. Eleven trials did not provide any information on clinical trial support or sponsorship. Two trials were funded by industry. We are very uncertain regarding the effect of vitamin D versus placebo or no intervention on all-cause mortality (risk ratio (RR) 0.86, 95% confidence interval (CI) 0.51 to 1.45; 27 trials; 1979 participants). The mean follow-up was 7 months (range 1 to 18 months). We are very uncertain regarding the effect of vitamin D versus placebo or no intervention on liver-related mortality (RR 1.62, 95% CI 0.08 to 34.66; 1 trial; 18 participants) (follow-up: 12 months); serious adverse events such as hypercalcaemia (RR 5.00, 95% CI 0.25 to 100.8; 1 trial; 76 participants); myocardial infarction (RR 0.75, 95% CI 0.08 to 6.81; 2 trials; 86 participants); thyroiditis (RR 0.33, 95% CI 0.01 to 7.91; 1 trial; 68 participants); circular haemorrhoidal prolapse (RR 3.00, 95% CI 0.14 to 65.9; 1 trial; 20 participants); bronchopneumonia (RR 0.33, 95% CI 0.02 to 7.32; 1 trial 20 participants); and non-serious adverse events. The certainty of evidence for all outcomes is very low. We found no data on liver-related morbidity such as gastrointestinal bleeding, hepatic encephalopathy, hepatorenal syndrome, ascites, or liver cancer. There were also no data on health-related quality of life. The evidence is also very uncertain regarding the effect of vitamin D versus placebo or no intervention on rapid, early, and sustained virological response in people with chronic hepatitis C. AUTHORS' CONCLUSIONS: Given the high risk of bias and insufficient power of the included trials and the very low certainty of the available evidence, vitamin D supplementation versus placebo or no intervention may increase or reduce all-cause mortality, liver-related mortality, serious adverse events, or non-serious adverse events in adults with chronic liver diseases. There is a lack of data on liver-related morbidity and health-related quality of life. Further evidence on clinically important outcomes analysed in this review is needed.


Subject(s)
Hepatitis C, Chronic , Adult , Dietary Supplements , Female , Humans , Male , Middle Aged , Quality of Life , Vitamin D
5.
PLoS One ; 17(1): e0260733, 2022.
Article in English | MEDLINE | ID: covidwho-1643240

ABSTRACT

BACKGROUND: COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. METHODS AND FINDINGS: Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID-19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. CONCLUSIONS: The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/pathogenicity , Vaccine Efficacy/statistics & numerical data , mRNA Vaccines/administration & dosage , COVID-19/mortality , COVID-19/pathology , COVID-19 Vaccines/adverse effects , Humans , Network Meta-Analysis , Randomized Controlled Trials as Topic , SARS-CoV-2/immunology , Survival Analysis , Treatment Outcome , Vaccines, Inactivated , Vaccines, Subunit , mRNA Vaccines/adverse effects
6.
Intensive Care Med ; 48(1): 45-55, 2022 01.
Article in English | MEDLINE | ID: covidwho-1605102

ABSTRACT

PURPOSE: We compared dexamethasone 12 versus 6 mg daily for up to 10 days in patients with coronavirus disease 2019 (COVID-19) and severe hypoxaemia in the international, randomised, blinded COVID STEROID 2 trial. In the primary, conventional analyses, the predefined statistical significance thresholds were not reached. We conducted a pre-planned Bayesian analysis to facilitate probabilistic interpretation. METHODS: We analysed outcome data within 90 days in the intention-to-treat population (data available in 967 to 982 patients) using Bayesian models with various sensitivity analyses. Results are presented as median posterior probabilities with 95% credible intervals (CrIs) and probabilities of different effect sizes with 12 mg dexamethasone. RESULTS: The adjusted mean difference on days alive without life support at day 28 (primary outcome) was 1.3 days (95% CrI -0.3 to 2.9; 94.2% probability of benefit). Adjusted relative risks and probabilities of benefit on serious adverse reactions was 0.85 (0.63 to 1.16; 84.1%) and on mortality 0.87 (0.73 to 1.03; 94.8%) at day 28 and 0.88 (0.75 to 1.02; 95.1%) at day 90. Probabilities of benefit on days alive without life support and days alive out of hospital at day 90 were 85 and 95.7%, respectively. Results were largely consistent across sensitivity analyses, with relatively low probabilities of clinically important harm with 12 mg on all outcomes in all analyses. CONCLUSION: We found high probabilities of benefit and low probabilities of clinically important harm with dexamethasone 12 mg versus 6 mg daily in patients with COVID-19 and severe hypoxaemia on all outcomes up to 90 days.


Subject(s)
COVID-19 Drug Treatment , Bayes Theorem , Dexamethasone , Humans , Hypoxia , SARS-CoV-2 , Steroids
7.
BMJ Open ; 11(12): e047037, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1595822

ABSTRACT

INTRODUCTION: In the management of type 2 diabetes, autonomy-supporting interventions may be a prerequisite to achieving more long-term improvement. Preliminary evidence has shown that the guided self-determination (GSD) method might have an effect on haemoglobin A1c and diabetes distress in people with type 1 diabetes. Previous trials were at risk of uncertainty. Thus, the objective is to investigate the benefits and harms of a GSD intervention versus an attention control group intervention in adults with type 2 diabetes. METHODS AND ANALYSIS: This trial protocol is guided by the The Standard Protocol Items: Recommendations for International Trials Statement. We describe the protocol for a pragmatic randomised, dual-centre, parallel-group, superiority clinical trial testing a GSD intervention versus an attention control for people with type 2 diabetes in outpatient clinics. The participants (n=224) will be recruited from two diverse regions of Denmark. The experimental stepped-care intervention will consist of three to five GSD sessions lasting up to 1 hour with a trained GSD facilitator. The sessions will be conducted face to face, by video conference or over the telephone. The attention controls will receive three to five sessions lasting up to an hour with a communication-trained healthcare professional provided face to-face, by video conference, or over the telephone. Participants will be included if they have type 2 diabetes,>18 years old, are not pregnant. Participants will be assessed before randomisation, at 5-month, and 12-month follow-up, the latter being the primary. The primary outcome is diabetes distress. Secondary outcomes are quality of life, depressive symptoms and non-serious adverse events. Exploratory outcomes are haemoglobin A1c, motivation and serious adverse events. Data will be collected using REDCap and analysed using Stata V.16. ETHICS AND DISSEMINATION: The trial will be conducted in compliance with the protocol, the Helsinki Declaration in its latest form, International Harmonisation of Good Clinical Practice guidelines and the applicable regulatory requirement(s). The trial has been approved by the Danish Data Protection Agency (P-2020-864). The Ethics Committee of the Capital Region of Denmark reviewed the trial protocol, but exempted the trial protocol from full review (H-20003638). The results of the trial will be presented at the outpatient clinics treating people with type 2 diabetes, at national and international conferences as well as to associations for people with diabetes and their relatives. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT04601311.


Subject(s)
Diabetes Mellitus, Type 2 , Adolescent , Adult , Ambulatory Care Facilities , Attention , Diabetes Mellitus, Type 2/therapy , Female , Glycated Hemoglobin/analysis , Humans , Pregnancy , Quality of Life , Randomized Controlled Trials as Topic
8.
Lancet Infect Dis ; 21(11): e342-e347, 2021 11.
Article in English | MEDLINE | ID: covidwho-1561809

ABSTRACT

Large-scale deployment of COVID-19 vaccines will seriously affect the ongoing phases 2 and 3 randomised placebo-controlled trials assessing SARS-CoV-2 vaccine candidates. The effect will be particularly acute in high-income countries where the entire adult or older population could be vaccinated by late 2021. Regrettably, only a small proportion of the population in many low-income and middle-income countries will have access to available vaccines. Sponsors of COVID-19 vaccine candidates currently in phase 2 or initiating phase 3 trials in 2021 should consider continuing the research in countries with limited affordability and availability of COVID-19 vaccines. Several ethical principles must be implemented to ensure the equitable, non-exploitative, and respectful conduct of trials in resource-poor settings. Once sufficient knowledge on the immunogenicity response to COVID-19 vaccines is acquired, non-inferiority immunogenicity trials-comparing the immune response of a vaccine candidate to that of an authorised vaccine-would probably be the most common trial design. Until then, placebo-controlled, double-blind, crossover trials will continue to play a role in the development of new vaccine candidates. WHO or the Council for International Organizations of Medical Sciences should define an ethical framework for the requirements and benefits for trial participants and host communities in resource-poor settings that should require commitment from all vaccine candidate sponsors from high-income countries.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Clinical Trials as Topic , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Double-Blind Method , Humans , Immunogenicity, Vaccine , Pandemics/prevention & control , SARS-CoV-2/immunology
9.
JAMA ; 326(18): 1807-1817, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1527380

ABSTRACT

Importance: A daily dose with 6 mg of dexamethasone is recommended for up to 10 days in patients with severe and critical COVID-19, but a higher dose may benefit those with more severe disease. Objective: To assess the effects of 12 mg/d vs 6 mg/d of dexamethasone in patients with COVID-19 and severe hypoxemia. Design, Setting, and Participants: A multicenter, randomized clinical trial was conducted between August 2020 and May 2021 at 26 hospitals in Europe and India and included 1000 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation. End of 90-day follow-up was on August 19, 2021. Interventions: Patients were randomized 1:1 to 12 mg/d of intravenous dexamethasone (n = 503) or 6 mg/d of intravenous dexamethasone (n = 497) for up to 10 days. Main Outcomes and Measures: The primary outcome was the number of days alive without life support (invasive mechanical ventilation, circulatory support, or kidney replacement therapy) at 28 days and was adjusted for stratification variables. Of the 8 prespecified secondary outcomes, 5 are included in this analysis (the number of days alive without life support at 90 days, the number of days alive out of the hospital at 90 days, mortality at 28 days and at 90 days, and ≥1 serious adverse reactions at 28 days). Results: Of the 1000 randomized patients, 982 were included (median age, 65 [IQR, 55-73] years; 305 [31%] women) and primary outcome data were available for 971 (491 in the 12 mg of dexamethasone group and 480 in the 6 mg of dexamethasone group). The median number of days alive without life support was 22.0 days (IQR, 6.0-28.0 days) in the 12 mg of dexamethasone group and 20.5 days (IQR, 4.0-28.0 days) in the 6 mg of dexamethasone group (adjusted mean difference, 1.3 days [95% CI, 0-2.6 days]; P = .07). Mortality at 28 days was 27.1% in the 12 mg of dexamethasone group vs 32.3% in the 6 mg of dexamethasone group (adjusted relative risk, 0.86 [99% CI, 0.68-1.08]). Mortality at 90 days was 32.0% in the 12 mg of dexamethasone group vs 37.7% in the 6 mg of dexamethasone group (adjusted relative risk, 0.87 [99% CI, 0.70-1.07]). Serious adverse reactions, including septic shock and invasive fungal infections, occurred in 11.3% in the 12 mg of dexamethasone group vs 13.4% in the 6 mg of dexamethasone group (adjusted relative risk, 0.83 [99% CI, 0.54-1.29]). Conclusions and Relevance: Among patients with COVID-19 and severe hypoxemia, 12 mg/d of dexamethasone compared with 6 mg/d of dexamethasone did not result in statistically significantly more days alive without life support at 28 days. However, the trial may have been underpowered to identify a significant difference. Trial Registration: ClinicalTrials.gov Identifier: NCT04509973 and ctri.nic.in Identifier: CTRI/2020/10/028731.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Life Support Care , Aged , COVID-19/complications , COVID-19/mortality , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Female , Glucocorticoids/adverse effects , Humans , Hypoxia/etiology , Hypoxia/therapy , Male , Middle Aged , Mycoses/etiology , Respiration, Artificial , Shock, Septic/etiology , Single-Blind Method
10.
PLoS One ; 16(3): e0248132, 2021.
Article in English | MEDLINE | ID: covidwho-1127793

ABSTRACT

BACKGROUND: COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. This is the second edition of a living systematic review of randomized clinical trials assessing the effects of all treatment interventions for participants in all age groups with COVID-19. METHODS AND FINDINGS: We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review was based on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. According to the number of outcome comparisons, we adjusted our threshold for significance to p = 0.033. We used GRADE to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until November 2, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 82 randomized clinical trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of bias. Meta-analyses showed no evidence of a difference between corticosteroids versus control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00; p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89; 95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty). The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential analyses showed that the required information size for all three analyses was not reached. Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate certainty) and trial sequential analysis (boundary for futility crossed) showed that we could reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR 0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of difference between remdesivir versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-cause mortality, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of a difference between tocilizumab versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials; very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on mechanical ventilation, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm of reject realistic intervention effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of bromhexine versus standard care on non-serious adverse events, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that hydroxychloroquine versus control reduced the risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus control reduced the risk of death, serious adverse events, and mechanical ventilation by 20%. All remaining outcome comparisons showed that we did not have enough information to confirm or reject realistic intervention effects. Nine single trials showed statistically significant results on our outcomes, but were underpowered to confirm or reject realistic intervention effects. Due to lack of data, it was not relevant to perform network meta-analysis or possible to perform individual patient data meta-analyses. CONCLUSIONS: No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence indicates that corticosteroids might reduce the risk of death, serious adverse events, and mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that intravenous immunoglobin might reduce the risk of death and serious adverse events; that tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and that bromhexine might reduce the risk of non-serious adverse events. More trials with low risks of bias and random errors are urgently needed. This review will continuously inform best practice in treatment and clinical research of COVID-19. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020178787.


Subject(s)
COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Bromhexine/therapeutic use , COVID-19/mortality , Clinical Trials as Topic , Expectorants/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Respiration, Artificial , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Treatment Outcome , COVID-19 Drug Treatment
12.
Acta Anaesthesiol Scand ; 65(6): 834-845, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1083073

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has resulted in millions of deaths and overburdened healthcare systems worldwide. Systemic low-dose corticosteroids have proven clinical benefit in patients with severe COVID-19. Higher doses of corticosteroids are used in other inflammatory lung diseases and may offer additional clinical benefits in COVID-19. At present, the balance between benefits and harms of higher vs. lower doses of corticosteroids for patients with COVID-19 is unclear. METHODS: The COVID STEROID 2 trial is an investigator-initiated, international, parallel-grouped, blinded, centrally randomised and stratified clinical trial assessing higher (12 mg) vs. lower (6 mg) doses of dexamethasone for adults with COVID-19 and severe hypoxia. We plan to enrol 1,000 patients in Denmark, Sweden, Switzerland and India. The primary outcome is days alive without life support (invasive mechanical ventilation, circulatory support or renal replacement therapy) at day 28. Secondary outcomes include serious adverse reactions at day 28; all-cause mortality at day 28, 90 and 180; days alive without life support at day 90; days alive and out of hospital at day 90; and health-related quality of life at day 180. The primary outcome will be analysed using the Kryger Jensen and Lange test adjusted for stratification variables and reported as adjusted mean differences and median differences. The full statistical analysis plan is outlined in this protocol. DISCUSSION: The COVID STEROID 2 trial will provide evidence on the optimal dosing of systemic corticosteroids for COVID-19 patients with severe hypoxia with important implications for patients, their relatives and society.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , COVID-19 Drug Treatment , Dexamethasone/administration & dosage , Pandemics , Randomized Controlled Trials as Topic/methods , SARS-CoV-2 , Anti-Inflammatory Agents/adverse effects , COVID-19/complications , Denmark , Dexamethasone/adverse effects , Dose-Response Relationship, Drug , Double-Blind Method , Hospital Mortality , Humans , Hydrocortisone/therapeutic use , Hypoxia/drug therapy , Hypoxia/etiology , India , Life Support Care/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Quality of Life , Survival Analysis , Sweden , Switzerland
13.
Acta Anaesthesiol Scand ; 65(5): 702-710, 2021 05.
Article in English | MEDLINE | ID: covidwho-1081822

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can lead to severe hypoxic respiratory failure and death. Corticosteroids decrease mortality in severely or critically ill patients with COVID-19. However, the optimal dose remains unresolved. The ongoing randomised COVID STEROID 2 trial investigates the effects of higher vs lower doses of dexamethasone (12 vs 6 mg intravenously daily for up to 10 days) in 1,000 adult patients with COVID-19 and severe hypoxia. METHODS: This protocol outlines the rationale and statistical methods for a secondary, pre-planned Bayesian analysis of the primary outcome (days alive without life support at day 28) and all secondary outcomes registered up to day 90. We will use hurdle-negative binomial models to estimate the mean number of days alive without life support in each group and present results as mean differences and incidence rate ratios with 95% credibility intervals (CrIs). Additional count outcomes will be analysed similarly and binary outcomes will be analysed using logistic regression models with results presented as probabilities, relative risks and risk differences with 95% CrIs. We will present probabilities of any benefit/harm, clinically important benefit/harm and probabilities of effects smaller than pre-defined clinically minimally important differences for all outcomes analysed. Analyses will be adjusted for stratification variables and conducted using weakly informative priors supplemented by sensitivity analyses using sceptic priors. DISCUSSION: This secondary, pre-planned Bayesian analysis will supplement the primary, conventional analysis and may help clinicians, researchers and policymakers interpret the results of the COVID STEROID 2 trial while avoiding arbitrarily dichotomised interpretations of the results. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04509973; EudraCT: 2020-003363-25.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/administration & dosage , Hypoxia/drug therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Bayes Theorem , Humans
14.
Syst Rev ; 9(1): 262, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-940035

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) which has rapidly spread worldwide. Several human randomized clinical trials assessing potential vaccines are currently underway. There is an urgent need for a living systematic review that continuously assesses the beneficial and harmful effects of all available vaccines for COVID-19. METHODS/DESIGN: We will conduct a living systematic review based on searches of major medical databases (e.g., MEDLINE, EMBASE, CENTRAL) and clinical trial registries from their inception onwards to identify relevant randomized clinical trials. We will update the literature search once a week to continuously assess if new evidence is available. Two review authors will independently extract data and conduct risk of bias assessments. We will include randomized clinical trials comparing any vaccine aiming to prevent COVID-19 (including but not limited to messenger RNA; DNA; non-replicating viral vector; replicating viral vector; inactivated virus; protein subunit; dendritic cell; other vaccines) with any comparator (placebo; "active placebo;" no intervention; standard care; an "active" intervention; another vaccine for COVID-19) for participants in all age groups. Primary outcomes will be all-cause mortality; a diagnosis of COVID-19; and serious adverse events. Secondary outcomes will be quality of life and non-serious adverse events. The living systematic review will include aggregate data meta-analyses, trial sequential analyses, network meta-analyses, and individual patient data meta-analyses. Within-study bias will be assessed using Cochrane risk of bias tool. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) and Confidence in Network Meta-Analysis (CINeMA) approaches will be used to assess certainty of evidence. Observational studies describing harms identified during the search for trials will also be included and described and analyzed separately. DISCUSSION: COVID-19 has become a pandemic with substantial mortality. A living systematic review assessing the beneficial and harmful effects of different vaccines is urgently needed. This living systematic review will regularly inform best practice in vaccine prevention and clinical research of this highly prevalent disease. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020196492.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines/adverse effects , Humans , Meta-Analysis as Topic , Network Meta-Analysis , Pandemics , Quality of Life , Research Design , SARS-CoV-2 , Systematic Reviews as Topic , Treatment Outcome
15.
PLoS Med ; 17(9): e1003293, 2020 09.
Article in English | MEDLINE | ID: covidwho-771816

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. METHODS AND FINDINGS: This is the first edition of a living systematic review of randomized clinical trials comparing the effects of all treatment interventions for participants in all age groups with COVID-19. We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Cochrane guidelines, and our 8-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and nonserious adverse events. We used Grading of Recommendations Assessment, Development and Evaluation (GRADE) to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until August 7, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 33 randomized clinical trials enrolling a total of 13,312 participants. All trials were at overall high risk of bias. We identified one trial randomizing 6,425 participants to dexamethasone versus standard care. This trial showed evidence of a beneficial effect of dexamethasone on all-cause mortality (rate ratio 0.83; 95% confidence interval [CI] 0.75-0.93; p < 0.001; low certainty) and on mechanical ventilation (risk ratio [RR] 0.77; 95% CI 0.62-0.95; p = 0.021; low certainty). It was possible to perform meta-analysis of 10 comparisons. Meta-analysis showed no evidence of a difference between remdesivir versus placebo on all-cause mortality (RR 0.74; 95% CI 0.40-1.37; p = 0.34, I2 = 58%; 2 trials; very low certainty) or nonserious adverse events (RR 0.94; 95% CI 0.80-1.11; p = 0.48, I2 = 29%; 2 trials; low certainty). Meta-analysis showed evidence of a beneficial effect of remdesivir versus placebo on serious adverse events (RR 0.77; 95% CI 0.63-0.94; p = 0.009, I2 = 0%; 2 trials; very low certainty) mainly driven by respiratory failure in one trial. Meta-analyses and trial sequential analyses showed that we could exclude the possibility that hydroxychloroquine versus standard care reduced the risk of all-cause mortality (RR 1.07; 95% CI 0.97-1.19; p = 0.17; I2 = 0%; 7 trials; low certainty) and serious adverse events (RR 1.07; 95% CI 0.96-1.18; p = 0.21; I2 = 0%; 7 trials; low certainty) by 20% or more, and meta-analysis showed evidence of a harmful effect on nonserious adverse events (RR 2.40; 95% CI 2.01-2.87; p < 0.00001; I2 = 90%; 6 trials; very low certainty). Meta-analysis showed no evidence of a difference between lopinavir-ritonavir versus standard care on serious adverse events (RR 0.64; 95% CI 0.39-1.04; p = 0.07, I2 = 0%; 2 trials; very low certainty) or nonserious adverse events (RR 1.14; 95% CI 0.85-1.53; p = 0.38, I2 = 75%; 2 trials; very low certainty). Meta-analysis showed no evidence of a difference between convalescent plasma versus standard care on all-cause mortality (RR 0.60; 95% CI 0.33-1.10; p = 0.10, I2 = 0%; 2 trials; very low certainty). Five single trials showed statistically significant results but were underpowered to confirm or reject realistic intervention effects. None of the remaining trials showed evidence of a difference on our predefined outcomes. Because of the lack of relevant data, it was not possible to perform other meta-analyses, network meta-analysis, or individual patient data meta-analyses. The main limitation of this living review is the paucity of data currently available. Furthermore, the included trials were all at risks of systematic errors and random errors. CONCLUSIONS: Our results show that dexamethasone and remdesivir might be beneficial for COVID-19 patients, but the certainty of the evidence was low to very low, so more trials are needed. We can exclude the possibility of hydroxychloroquine versus standard care reducing the risk of death and serious adverse events by 20% or more. Otherwise, no evidence-based treatment for COVID-19 currently exists. This review will continuously inform best practice in treatment and clinical research of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Critical Care/methods , Disease Management , Pandemics , Pneumonia, Viral/therapy , Quality of Life , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/psychology , Hospitalization/trends , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/psychology , SARS-CoV-2
17.
Acta Anaesthesiol Scand ; 64(9): 1365-1375, 2020 10.
Article in English | MEDLINE | ID: covidwho-671325

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus-2 has caused a pandemic of coronavirus disease (COVID-19) with many patients developing hypoxic respiratory failure. Corticosteroids reduce the time on mechanical ventilation, length of stay in the intensive care unit and potentially also mortality in similar patient populations. However, corticosteroids have undesirable effects, including longer time to viral clearance. Clinical equipoise on the use of corticosteroids for COVID-19 exists. METHODS: The COVID STEROID trial is an international, randomised, stratified, blinded clinical trial. We will allocate 1000 adult patients with COVID-19 receiving ≥10 L/min of oxygen or on mechanical ventilation to intravenous hydrocortisone 200 mg daily vs placebo (0.9% saline) for 7 days. The primary outcome is days alive without life support (ie mechanical ventilation, circulatory support, and renal replacement therapy) at day 28. Secondary outcomes are serious adverse reactions at day 14; days alive without life support at day 90; days alive and out of hospital at day 90; all-cause mortality at day 28, day 90, and 1 year; and health-related quality of life at 1 year. We will conduct the statistical analyses according to this protocol, including interim analyses for every 250 patients followed for 28 days. The primary outcome will be compared using the Kryger Jensen and Lange test in the intention to treat population and reported as differences in means and medians with 95% confidence intervals. DISCUSSION: The COVID STEROID trial will provide important evidence to guide the use of corticosteroids in COVID-19 and severe hypoxia.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Hydrocortisone/therapeutic use , Hypoxia/complications , Hypoxia/drug therapy , Research Design , Adult , Anti-Inflammatory Agents/therapeutic use , Humans , Treatment Outcome
18.
Syst Rev ; 9(1): 108, 2020 05 09.
Article in English | MEDLINE | ID: covidwho-209620

ABSTRACT

BACKGROUND: COVID-19 is a rapidly spreading virus infection that has quickly caused extensive burden to individual, families, countries, and the globe. No intervention has yet been proven effective for the treatment of COVID-19. Some randomized clinical trials assessing the effects of different drugs have been published, and more are currently underway. There is an urgent need for a living, dynamic systematic review that continuously evaluates the beneficial and harmful effects of all available interventions for COVID-19. METHODS/DESIGN: We will conduct a living systematic review based on searches of major medical databases (e.g., MEDLINE, EMBASE, CENTRAL) and clinical trial registries from their inception onwards to identify relevant randomized clinical trials. We will update the literature search once a week to continuously assess if new evidence is available. Two review authors will independently extract data and perform risk of bias assessment. We will include randomized clinical trials comparing any intervention for the treatment of COVID-19 (e.g., pharmacological interventions, fluid therapy, invasive or noninvasive ventilation, or similar interventions) with any comparator (e.g., an "active" comparator, standard care, placebo, no intervention, or "active placebo") for participants in all age groups with a diagnosis of COVID-19. Primary outcomes will be all-cause mortality and serious adverse events. Secondary outcomes will be admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. The living systematic review will include aggregate data meta-analyses, Trial Sequential Analyses, network meta-analysis, and individual patient data meta-analyses. Risk of bias will be assessed with domains, an eight-step procedure will be used to assess if the thresholds for clinical significance are crossed, and the certainty of the evidence will be assessed by Grading of Recommendations, Assessment, Development and Evaluations (GRADE). DISCUSSION: COVID-19 has become a pandemic with substantial mortality. A living systematic review evaluating the beneficial and harmful effects of pharmacological and other interventions is urgently needed. This review will continuously inform best practice in treatment and clinical research of this highly prevalent disease. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020178787.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Network Meta-Analysis , Pneumonia, Viral/therapy , Systematic Reviews as Topic , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Coronavirus Infections/psychology , Critical Care , Humans , Pandemics , Pneumonia, Viral/physiopathology , Pneumonia, Viral/psychology , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL